t-Perfection Is Always Strong for Claw-Free Graphs

نویسندگان

  • Henning Bruhn
  • Maya Jakobine Stein
چکیده

A connected graph G is called t-perfect if its stable set polytope is determined by the non-negativity, edge and odd-cycle inequalities. Moreover, G is called strongly t-perfect if this system is totally dual integral. It is an open problem whether t-perfection is equivalent to strong t-perfection. We prove the equivalence for the class of claw-free graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Claw-free graphs with strongly perfect complements. Fractional and integral version, Part II: Nontrivial strip-structures

Strongly perfect graphs have been studied by several authors (e.g., Berge andDuchet (1984) [1], Ravindra (1984) [7] and Wang (2006) [8]). In a series of two papers, the current paper being the second one, we investigate a fractional relaxation of strong perfection. Motivated by a wireless networking problem, we consider claw-free graphs that are fractionally strongly perfect in the complement. ...

متن کامل

Claw-Free Graphs With Strongly Perfect Complements. Fractional and Integral Version

Strongly perfect graphs have been studied by several authors (e.g., Berge and Duchet [1], Ravindra [7], Wang [8]). In a series of two papers, the current paper being the second one, we investigate a fractional relaxation of strong perfection. Motivated by a wireless networking problem, we consider claw-free graphs that are fractionally strongly perfect in the complement. We obtain a forbidden i...

متن کامل

Claw-free graphs with strongly perfect complements. Fractional and integral version. Part I. Basic graphs

Strongly perfect graphs have been studied by several authors (e.g. Berge and Duchet [1], Ravindra [12], Wang [14]). In a series of two papers, the current paper being the first one, we investigate a fractional relaxation of strong perfection. Motivated by a wireless networking problem, we consider claw-free graphs that are fractionally strongly perfect in the complement. We obtain a forbidden i...

متن کامل

Claw-free graphs. II. Non-orientable prismatic graphs

A graph is prismatic if for every triangle T , every vertex not in T has exactly one neighbour in T . In a previous paper we gave a complete description of all 3-colourable prismatic graphs, and of a slightly more general class, the “orientable” prismatic graphs. In this paper we describe the non-orientable ones, thereby completing a description of all prismatic graphs. Since complements of pri...

متن کامل

Claw-free circular-perfect graphs

The circular chromatic number of a graph is a well-studied refinement of the chromatic number. Circular-perfect graphs form a superclass of perfect graphs defined by means of this more general coloring concept. This paper studies claw-free circular-perfect graphs. First we prove that ifG is a connected claw-free circular-perfect graph with χ(G) > ω(G), then min{α(G), ω(G)} = 2. We use this resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2010